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ABSTRACT 

We describe an algorithm for simultaneous refinement of a three-dimensional density 

map and of the orientation parameters of two-dimensional projections that are used to 

reconstruct this map.  The application is in electron microscopy, where the three-

dimensional structure of a protein has to be determined from a set of two-dimensional 

projections collected at random but initially unknown angles.  The design of the 

algorithm is based on the assumption that initial low resolution approximation of the 

density map and reasonable guesses for orientation parameters are available.  Thus, the 

algorithm is applicable in final stages of the structure refinement, when the quality of the 

results is of main concern.  We define the objective function to be minimized in real 

space and solve the resulting nonlinear optimization problem using a Quasi-Newton 

algorithm.  We calculate analytical derivatives with respect to density distribution and the 

finite difference approximations of derivatives with respect to orientation parameters.  

We demonstrate that calculation of derivatives is robust with respect to noise in the data. 

This is due to the fact that noise is annihilated by the back-projection operations.  Our 

algorithm is distinguished from other orientation refinement methods (i) by the 

simultaneous update of the density map and orientation parameters resulting in excellent 

computational efficiency and (ii) by high quality of the results due to superior algebraic 

reconstruction technique integrated into the computational procedure.  We demonstrate 

the excellent speed and accuracy of our method by using simulated data. 

1. INTRODUCTION 

In single particle analysis the data is available in the form of two-dimensional 

(2-D) electron microscopy (EM) projections of a three-dimensional (3-D) electron 

density map of a biological macromolecule.  The goal of the analysis is to recover the 

3-D structure, but the directions of projections are unknown.  The initial guess for the 

projection directions can be established either experimentally using the Random Conical 

Tilt technique (Radermacher et al., 1987) or computationally (Goncharov, 1986; 

Goncharov et al., 1987; Penczek et al., 1996; van Heel, 1987).  In either case, the errors 

in projection directions will be large and the resulting initial structure will have low 
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resolution, so the subsequent refinement of the orientation parameters assigned to 

projections is necessary. 

The currently used refinement procedures can be roughly divided into two groups: 

(i) those that are based on comparison of the 2-D projection data with the systematically 

generated projections of the current guess of the structures and (ii) those that seek to 

correct orientation parameters by minimizing an overall alignment error among 

projections.  The first category is prominently represented by the projection matching 

technique (Penczek et al., 1994).  In this approach, the step of orientation correction is 

separated from the step of calculating the 3-D reconstruction of the new density map.  

Since the method is implemented in real space, i.e., both the projection operations and the 

3-D reconstruction are carried out in the object space, the method is reasonably efficient 

and the interpolation errors are minimized.  The methods that fall into the second 

category are usually implemented by using transformations to map the projection data 

into spaces in which the data can be conveniently manipulated.  Examples of such 

transformations are spherical harmonics transformation (Navaza, 2003; Provencher and 

Vogel, 1988; Yin et al., 2003), Fourier transformation (Grigorieff, 1998), and Radon 

transformation (Radermacher, 1994; Radermacher et al., 2001).  The main advantage of 

these approaches is that the problem of separating the orientation search from the 3-D 

reconstruction is eliminated, as the resulting structure in real space can be calculated only 

once, after the convergence of the orientation determination algorithm is achieved.  

Unfortunately, none of the methods in this group can be used to perform exhaustive 

searches in an efficient way.  Consequently, these methods are more appropriate for the 

final stages of the structure refinement.  On a more fundamental level, a major drawback 

associated with working in transformed spaces is that the data (2-D projections) is 

represented in polar coordinates, while the 3-D structure must be reconstructed in 

(uniform) Cartesian coordinates.  Transformation from a nonuniform polar grid to the 

uniform grid constitutes a difficult inverse problem that is sensitive to the presence of 

noise in the data and to interpolation errors (Penczek et al., 2004).  Therefore, even if an 

optimum solution for the orientation problem is found in the transformed space, it is not 

immediately apparent that the solution corresponds to an optimum 3-D structure in 

Cartesian space, as the two are separated by a potentially ill-defined inverse 
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transformation.  So far, little attention has been devoted to the error analysis in the 

orientation searches in transformed spaces.  

In order to overcome some of the shortcomings of the existing structure 

determination methods we propose a new approach based on the direct and simultaneous 

optimization of both the density map and orientation parameters of the projection data.  

In our method we seek solution to the problem that is formulated in the measurement 

space, i.e., the real space.  In this way, we hope to minimize the adverse effect of the 

interpolation errors on the refinement procedure.  In addition, by integrating the inverse 

to the projection transformation directly into the framework of the optimization problem, 

we are able to fully explore the interdependence between the orientation of the projection 

data and the 3-D structure to be reconstructed. 

Formally, we state the estimation of the 3-D electron density map (denoted by 
3nRf ∈ ) of a biological molecule from a large number of 2-D EM projection images, 

,,...,2,1,
2

miRb n
i =∈  of isolated (single) particles with random and unknown 

orientations as a nonlinear optimization problem: 

( ) 2

, , , , , 1

1min ( , , , , , ) ( , , ) , ,
2i i i i

i i i x yi i

m

i i i x y i i i x y is s f i
s s f P f s s b

φ θ ψ
ρ φ θ ψ φ θ ψ

=

= −∑   (1) 

where ),,( iiiP ψθφ  is a line integral operator that projects f onto a 2-D plane after f is 

shifted by ( , )
i ix ys s  and rotated by a set of unknown Euler angles ),,( iii ψθφ .  The factor 

of ½ is included merely for convenience. 

The objective function in (1) is clearly nonlinear due to the coupling between the 

orientation parameters ( , , , , ),
i ii i i x ys sφ θ ψ   1, 2, , ,i m= K  and the 3-D density f .  The total 

number of unknown parameters to be estimated is 3 5n m+ .  Note that in single particle 

analysis the number of projection data m is far greater than the linear size of the data in 

pixels, i.e., m n . 
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We are interested in numerical methods for finding an optimal solution to (1) with 

the assumption that reasonable approximations to f and ( ), , , , ,
i ii i i x ys sφ θ ψ  1, 2, ,i m= K  

are available.  That is, we are concerned with a local optimization scheme instead of 

trying to tackle (1) as a global optimization problem.  Methods for obtaining an initial 

low resolution approximation to f can be found in (Goncharov, 1986; Goncharov et al., 

1987; Penczek et al., 1996; van Heel, 1987). 

A generalized coordinate descent algorithm called projection matching is 

presented in (Penczek et al., 1994) to seek a minimizer of (1) in two alternating search 

directions.  Starting from a given low resolution density approximation )0(f , the 

algorithm performs an exhaustive search for the optimal Euler angles ),,( iii ψθφ  and a 

restricted search for the optimal translations ( , )
i ix ys s  associated with each EM projection 

image ib .  These searches are carried out by comparing ib  with a set of reference 

projections ,jp  (j = 1, 2,…, mr) produced by computationally re-projecting )0(f  in 

directions specified by a set of prescribed and quasi-uniformly distributed Euler angles 

( )ˆ ˆ ˆ, , ,i i iφ θ ψ  1, 2, , ri m= K .  The set of angles and shifts that yields the minimum value of 

i jb p−  is assigned to ib .  Once each EM projection image has been assigned a set of 

reference Euler angles ( )ˆ ˆ ˆ, ,i i iφ θ ψ  and shifts ( )ˆ ˆ, ,
i ix ys s  a new density map )1(f  is 

computed by solving a linear least squares problem 

2

1

1 ˆ ˆ ˆmin ( , , )
2

m

i i i if i
P f bφ θ ψ

=

−∑ , (2) 

preferably using a version of the iterative algebraic reconstruction technique, such as 

SIRT, which yields a superior estimate of the density map (Penczek et al., 1992).  

Subsequently, the optimal solution to (2) is used to begin the next cycle of the iterative 

process until a stationary point of (1) is identified. 

The experimental results presented in (Penczek et al., 1994)) demonstrated that 

projection matching is quite effective for the reconstruction of the ribosome complex 
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eventually leading to determination of the structure of 70S E. coli ribosome at 11.5 Å 

resolution (Gabashvili et al., 2000).  Projection matching also proved to be equally 

effective for determination of structures of a variety of macromolecular assemblies, both 

asymmetric (Beckmann et al., 1997; Craighead et al., 2002) and symmetric (Boisset et 

al., 1995).  Unfortunately, little is known about the theoretical convergence properties of 

the method.  Based on our experience, we can state that the overall performance of the 

projection matching method is mainly limited by the separation of the search for the 

orientation parameters from the 3-D reconstruction that yields a new density map.  

Although this separation results in a computational scheme that is reasonably efficient, 

the convergence of the method is sometimes unpredictable.  It is important to notice that 

during the first phase of each iteration, the correction of the orientation parameters 

associated with one particular projection image is carried out independently from those 

associated with the remaining projections.  Clearly, this approach does not necessarily 

guarantee decrease of the target function (1).  In fact, it can even increase its value, 

especially if the second phase of the iteration is not carried out accurately.  A more 

appropriate strategy is perhaps to update the density map by solving (2) after the 

assignment of orientation parameters to each projection is completed, but such an 

approach would be prohibitively time consuming.  

 In this paper, we will demonstrate that the search for the optimal density and 

orientation parameters can be carried out simultaneously by applying a Quasi-Newton 

algorithm (Norcedal and Wright, 1999) to (1) directly.  The simultaneous search offers 

the benefits of potentially more rapid convergence and lower computational cost.  

Because it puts the correction of the 3-D structure and the correction of the orientation 

parameters on an equal footing, the problem of error propagation, which tends to occur in 

the projection matching algorithm, is mitigated. 

 

2. METHODS 
 

In this section we present the optimization method we use to solve the 

unconstrained nonlinear problem of the simultaneous 3-D structure and projection 
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orientation refinement given by (1).  We selected a Quasi-Newton scheme, in which the 

approximation to the inverse of the Hessian is constructed incrementally by making use 

of the gradient information gathered at previous iterations.  In the current presentation of 

the algorithm we assume there are no translational errors; however, this does not restrict 

the generality of the approach as additional unknown parameters can be introduced 

naturally within the framework of the selected optimization method.  We conclude the 

section by providing an analysis of the computational complexity of the algorithm and 

demonstrating that it compares favorably with that of the projection matching method. 

In the discussion that follows, we use )(xρ  to represent the objective function to 

be optimized in (1), where ( )mmm
T fx ψψθθφφ LLL 111=  is a vector representation 

of the unknown parameters contained in (1).  Note the absence of translational errors.  It 

is convenient to express )(xρ  as 

,)(
2
1)( 2xrx =ρ  (3) 

where 



















−

−
−

=

mmmm bfP

bfP
bfP

xr

),,(

),,(
),,(

)( 2222

1111

ψθφ

ψθφ
ψθφ

M
 (4) 

is the residual vector that measures the discrepancy between the data and the re-projected 

3-D structure. 

The standard numerical procedure for solving an unconstrained nonlinear 

optimization problem (1) can be described as follows.  Given a starting guess )0(x  of the 

optimal solution x , one seeks a search direction s such that ,)()( )0()0( xsx ραρ <+  for 

some choice of α .  Commonly used search directions are the steepest descent direction 

(negative of the gradient), the Newton direction, the Quasi-Newton direction, and the 

Gauss-Newton direction.  Once a search direction is chosen, one can use either a line 

search or a trust region strategy (Norcedal, 1991) to select an appropriate step lengthα .  

(The use of a trust region also refines the search direction.)  If the objective function 
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remains large at the new iterate sxx ⋅+= α)0()1( , a new search direction and step length 

are computed.  These steps are repeated until there is no further reduction in )( )(kxρ  for 

some k. 

The computation of the search direction usually involves evaluating the 

derivatives of )(xρ  with respect to each parameter contained in x.  If the steepest descent 

direction is chosen as the search direction, one only needs to compute the first derivative 

of )(xρ  with respect to all elements of x.  The second derivatives or their approximations 

are required for Newton, Quasi-Newton, and Gauss-Newton directions. 

It is generally difficult to compute the analytical derivatives of )(xρ  with respect 

to the orientation parameters.  However, these derivatives can be approximated through 

the use of the finite difference technique.  For example, one may compute the partial 

derivative of )(xρ  with respect to iφ  as follows: 

,T
i i

i

g rρ
φ

∂ ≈
∂

 (5) 

where 

( , , ) ( , , ) ,

( , , ) .

i i i i i i
i

i i i i i

P Pg f

r P f b

φ φθ ψ φ θ ψ
φ

φ θ ψ

+ ∆ −=
∆

= −  (6)

 

It is easy to verify that the gradient of )(xρ  can be expressed by 

,)( rJx T=∇ ρ  (7) 

where J is the Jacobian matrix that has the form of 





















=

ψθφ

ψθφ

ψθφ

mmmm gggP

gggP
gggP

J
OOOM

2222
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, (8) 
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and 

  ),,,( iiii PP ψθφ=  (9) 

,),,(),,( fPPg iiiiii
i φ

ψθφψθφφφ

∆
−∆+=  

,),,(),,( fPPg iiiiii
i θ

ψθφψθθφθ

∆
−∆+=  

.),,(),,( fPPg iiiiii
i ψ

ψθφψψθφφ

∆
−∆+=  

Although the dimension of the Jacobian matrix, which is )3( 32 mnmn +× , is large, the 

matrix itself is quite sparse.  Furthermore, the gradient calculation does not require J to 

be stored explicitly; therefore, the computation of rJ T can be accomplished iteratively 

using a sequence of projection and back-projection calculations.  As explained earlier, we 

restrict our analysis to the case where there are no translational errors.  If the shifts were 

included, the Jacobian matrix (8) would contain two more block diagonal submatrices 

and its dimensions would increase accordingly.  However, the sparsity structure of the 

matrix would remain essentially the same, and in general terms the analysis presented 

below would hold. 

The negative of the gradient gives the steepest descent direction which one may 

use directly to search for a local minimum of (1).  However, an optimization algorithm 

based purely on the steepest descent search direction may have a very slow convergence 

rate.  To accelerate the convergence of a gradient-based algorithm, one often needs 

additional information about the curvature of the objective function.  Because it is 

generally not practical to compute the Hessian of )(xρ directly, we resort to a Quasi-

Newton scheme in which an approximation to the inverse of the Hessian is constructed 

incrementally by making use of the gradient information gathered at previous iterations.  

In particular, one obtains a search direction by solving 

)( kkk xsB ρ−∇= , (10) 
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where kB is an approximate Hessian of )(xρ .  We follow the limited-memory BFGS 

(LBFGS) algorithm (Norcedal, 1980) to update the approximate Hessian (or its inverse) 

using a low rank modification.  The term “limited-memory” refers to the fact that the 

LBFGS algorithm requires saving only a fixed number of gradient vectors computed in 

previous iterations.  These gradient vectors are used to provide a compact representation 

of an approximate Hessian. The approximate Hessian matrix kB  (or its inverse) is never 

stored explicitly. 

The predominant computational cost of the LBFGS algorithm is the function and 

gradient evaluations performed during each iteration step.  The evaluation of the 

objective function (1) involves m projection calculations.  If linear interpolations are used 

in these calculations, the function evaluation consumes )( 3mnO  floating point operations 

(flops).  To calculate the gradient, six (assuming we are considering shifts) or four (if 

only the Eulerian angles are refined) projections and one back-projection are required for 

each 2-D particle image.  These operations also have a computational complexity of 

)( 3mnO .  Thus, the overall complexity of the function and gradient calculations is 

)( 3mnO  with a constant factor that is less than 10.  This complexity analysis compares 

favorably with that associated with the projection matching algorithm.  In projection 

matching, the search for the optimal in-plane rotation is typically carried out by cross-

correlating a particle image with a reference projection, which consumes )log( 2 nnO  

flops with a multiplicative factor that depends on the range of translations considered 

(Joyeux and Penczek, 2002).  In addition, the use of SIRT in solving (2) consumes 

)( 3kmnO  flops, where k is the number of SIRT iterations required to reach the minimum 

of (2).  Thus, the overall computational complexity of the projection matching algorithm 

is at least 3 2( log )rO kmn mn n n+ , where rn  is the number of reference images generated 

to carry out exhaustive orientation search.  Typically, rn  is much larger than n, hence the 

cost of projection matching tends to be significantly higher than that of LBFGS on a per 

iteration basis. 



 11

3. RESULTS 

In this section, we describe experimental results obtained from applying the 

simultaneous structure and orientation optimization technique developed in Section 2 to 

simulated data. 

3.1 Preparation of the test data 

We use the 3-D density map of the multisubunit transcription factor IID (TFIID) 

complex published in (Andel et al., 1999) to generate our test data.  The 3-D map is 

placed in a volume 643 voxels, with the voxel size 7Å.  The resolution of the structure is 

35Å.  Three different 3-D views of the structure are shown in Figure 1.  This 3-D map 

serves as part of the ideal solution to the optimization problem (1) that we try to solve. 

We project the ideal 3-D TFIID structure f computationally in 799 quasi-

uniformly distributed directions using a 5° angular step (Penczek et al., 1994) 

approximately corresponding to the angular step imposed by the resolution limit of the 

map.  Trilinear interpolation is used for the projection calculation.  The resulting 799 2-D 

projection images )799,...,2,1( =ibi  form the 2-D data set that is used in the subsequent 

computation.  That is, these images are used to recover the 3-D structure f and the 

projection (Euler) angles ,),,( iii ψθφ  (i=1,2…,799) simultaneously. 

The initial guess of the 3-D structure used to start the limited-memory BFGS 

optimization procedure is a low resolution 3-D structure obtained from a random conical 

tilt reconstruction using images pairs collected from tilted (32°) and untilted (0°) samples.  

During the original work on TFIID structure determination, this random conical tilt 

structure was used to initiate the projection matching procedure that lead to the eventual 

determination of the complex (Andel et al., 1999).  Three different 3-D views of this 

initial structure are shown in Figure 2. 

Because the unknown parameters contained in our problem formulation include 

both the density of TFIID at each voxel and the Euler angles associated with each 

projection image, we need to provide initial guesses for the Euler angles also.  These 
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initial guesses for ),,( iii ψθφ  (i=1,2,…,799) are generated by perturbing the “exact” 

angles (that are used to generate the projection data) by ,  ,  and ,i i iφ θ ψ∆ ∆ ∆ respectively, 

where ,  ,  and i i iφ θ ψ∆ ∆ ∆  are from a Gaussian distribution ( )0,30N o .  The distribution 

of initial guesses for ),( ii θφ  (which defines the i-th projection direction) is shown in 

Figure 3 along with the distribution of the exact projection directions. 

The low resolution 3-D structure and the perturbed orientation parameters form 

the starting point )0(x  required for the LBFGS optimization procedure.  

3.2 Convergence history 

We monitor the convergence of the LBFGS algorithm by evaluating both the 

objective function )(xρ  and the relative error in the 3-D structure after each iteration 

step.  If the 3-D structure constructed at the j-th iteration is denoted by )( jf , then the 

relative error of the structure is defined by 

f
ff j

j

)(−
=δ . (11) 

In Figure 4 we show that the objective function of the optimization problem 

defined in (1) decreases monotonically.  After 100 iterations, the objective function is 

reduced by nearly two orders of magnitude.  In Figure 5, we show that the relative error 

in f decreases from 0.80 (80% error in norm) to roughly 0.13 (13% error in norm) after 

100 iterations.  Although the reduction in the relative error is not strictly monotonic, the 

progress towards convergence is steady. 

3.3 Quality of the Reconstruction 

In Figure 6 we show the comparison of the reconstructed 3-D structure of TFIID 

with the original structure that is used to generate the projection data.  The isosurface 

rendering of the reconstructed 3-D structure appears nearly indistinguishable from that of 

the original TFIID structure. 
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We also plotted the distributions of the projection directions recovered from the 

LBFGS calculation.  In Figure 7 we show that most of the projection directions (defined 

by the angles ii θφ  and ) match with the original directions along which the 2-D data is 

generated.  To assess the resolution of the reconstructed 3-D volume, we computed the 

Fourier shell correlation (FSC) (Saxton and Baumeister, 1982) between )100(f and f .   In 

Figure 8 we show that FSC curve drops below the 0.5 cutoff at spatial frequency ~1/39 

1/Å. 

3.4 Comparison with Projection Matching 

The LBFGS algorithm used to simultaneously refine the 3-D structure and the 

orientation parameters associated with each projection image is a local optimization 

scheme.  The success of this method depends on having a good starting guess for the 3-D 

structure and orientations of projections.  When such a good initial guess is available, the 

method can be very efficient in finding the optimal solution to (1).  The most time-

consuming part of the calculation is the gradient evaluation performed at each step.  As 

we illustrated above, the gradient calculation is significantly cheaper than the exhaustive 

search one typically performs in the projection-matching algorithm. 

In Figure 9 we show the results of the comparison of the cost of the simultaneous 

structure and orientation refinement with the cost of projection matching.  Both methods 

were implemented within a framework of SPIDER system (Frank et al., 1996) using MPI 

parallelization (Pacheco, 1996).  The calculations were carried out on an IBM SP at the 

National Energy Research Scientific Computing Center, which comprises of 375 Mhz 

Power 3 processors.  We used 16 processors in our experiments.  Each Power3 processor 

was equipped with a 2 MB cache, and it had a peak performance of 1.5Gflops/second.  

The number of reference images used in the projection matching was also 799 (5o angular 

step).  The SPIDER implementation of SIRT algorithm (command ‘BP RP’) (Penczek et 

al., 1992) was used to perform the 3-D reconstruction with the number of iterations set to 

100. 
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We ran 100 iterations of LBFGS iterations.  Each iteration took roughly 2 wall 

clock seconds on 16 processors.  At the end of the 100-th iteration, the relative error 

became less than 0.13.  In contrast, the relative error was reduced significantly during the 

first projection matching iteration as the matching algorithm identifies the approximate 

orientation for each projection image.  However, the rate of convergence then slows 

down significantly during subsequent iterations.  Each iteration of the projection 

matching took roughly 100 wall clock seconds on 16 processors.  The relative error 

decreased to 0.38 at the 12-th iteration.  The algorithm appeared to stall at this point, and 

the relative error even began to increase beyond that point indicating the amplification of 

the noise introduced by numerical round-offs. 

In Figure 10 we show the comparison of the FSC between f  and )100(
qf  with the 

FSC between f  and )11(
pf , where f  is the ideal 3-D density function, )100(

qf  is the 3-D 

density recovered at the end of the 100-th LBFGS iteration, and )11(
pf  is the 3-D density 

produced at the end of the 11-th iteration of the projection matching algorithm.  As we 

already pointed out earlier, the FSC curve associated with the LBFGS refinement drops 

below the 0.5 cutoff at the spatial frequency ~1/39 1/Å, which is close to the highest 

resolution (35 Å) one can achieve for this particular data set.  Furthermore, the FSC 

values are close to one (the optimal correlation value) at low frequencies until the 

resolution limit is nearly reached.  In contrast, the FSC curve associated with the 

projection matching algorithm decreases more rapidly at low frequencies; as an effect, 

the achieved resolution is only ~1/63 Å. 

3.5 The Effect of Noise 

In electron microscopy, the 2-D projection images are typically noisy.  In this 

section, we illustrate the effect of noise on the convergence of the LBFGS algorithm.  We 

generated the noise-corrupted images as follows.  For each projection image we used in 

the previous experiments, we added zero-mean Gaussian noise scaled such that the 

resulting Signal-to-Noise Ratio (SNR) in the 2-D projection image was one. 
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The introduction of noise in the data slowed the convergence of LBFGS slightly 

(Figure 11).  Although the objective function decreases monotonically, which indicates 

that the gradient vector is not severally corrupted by noise, the relative error in the 

reconstructed 3-D density appears to reach the minimum around the 90-th iterations.  

After the 90-th iteration, the relative error starts to increase, indicating the amplification 

of noise in the subsequent refinement iterations. 

It is not difficult to see why the presence of noise in the projection data does not 

have a severe effect on the gradient calculation.  We partition the gradient vector 

rJx T=∇ )(ρ  as follows 

,)( 







=∇

g

f

h
h

xρ  (12)  

where 
3n

f Rh ∈ and m
g Rh 3∈ .  It is easy to show that 

( )
1 1

m m
T T

f j j j j j
j j

h P r P b P f
= =

= = −∑ ∑
 

(13) 

and 

( )1 1 1 ,T
g m m mh φ φ θ θ ψ ψγ γ γ γ γ γ= L L L  (14)

 
where 

,

,

,

T
j j j

T
j j j

T
j j j

r g

r g

r g

φ φ

θ θ

ψ ψ

γ

γ

γ

=

=

=

 (15) 

and ,jgφ
jgθ , and jgψ  are given by (9).   

From equation (13) it clearly follows that the fh  component of the gradient 

vector is simply a sum of the back-projected residual vectors.  It is important to note that 

the oscillatory noise components present in the 2-D projection data jb  and those 

introduced in the intermediate 3-D structure f  can often be well represented by linear 
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combinations of the left and right singular vectors associated with the zero or small 

singular values of the projection operator jP ’ respectively (Hansen, 1997).  Because the 

noise present in jb  tends to lie in the null space of ,T
jP  and because the noise introduced 

in f  tends to lie in the null space of jP , a significant portion of these undesirable 

components is likely to be annihilated or attenuated in the projection and back projection 

calculations in (13).  Furthermore, when the noise components in 2-D projection images 

are uncorrelated, the sum of the back-projected residual vectors will tend to have an 

averaging effect that yields a higher SNR in fh .   

To ascertain the effect of noise on the gh  portion of the gradient vector (14), it is 

sufficient to notice that φ
jg  is in the intersection of the numerical ranges of jP  and 

( )jjjP ψθφφ ,,∆+ .  Therefore, φ
jg  is numerically orthogonal to the intersection of the 

null spaces of T
jP  and ( ), ,T

j j jP φ φθ ψ+ ∆ , which contains most of the noise components 

in jr .  Hence, the φγ j  element of the gh  vector, which is the inner product between φ
jg  

and jr , is unlikely to be contaminated by noise.  Similar arguments can be applied to the 

φγ j  and φγ j  elements of the gh  vector. 

4. DISCUSSION 

We have formulated the single particle reconstruction and orientation 

determination problems as a unified nonlinear optimization problem.  To solve it, we 

have applied a Quasi-Newton method and demonstrated that the method allows 

simultaneous refinement of the 3-D density map and of the Eulerian angles that describe 

orientations of 2-D projections.  We have illustrated how to approximate gradient of the 

objective function through finite difference, and have pointed out that the gradient 

calculation itself is significantly computationally less expensive than performing an 

exhaustive search in the orientation parameter space, as is done in the projection 

matching algorithm.  We also have argued that the gradients would not be as sensitive to 
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the noise in the data as one could expect.  Using simulated data we have demonstrated 

that the numerical scheme we have developed indeed converges to the desired optimal 

solution.  In our tests the initial guess used to start off the iterative optimization procedure 

was within practically encountered vicinity of the true minimizer of the objective 

function. 

The algorithm proposed in this paper remains a local optimization algorithm that 

is only effective when one has an initial approximation to the 3-D structure and initial 

estimates to the orientation parameters that are sufficiently close to the optimal solution 

of the problem (1).  Our algorithm is most effective when a globalization strategy is 

available to bring the initial guess of the 3-D structure and orientation parameters within 

the convergence radius.  While in this work we have omitted the translation errors, the 

presented mathematical framework is quite general and additional optimization 

parameters, such as shift and defocus settings can be easily introduced. 

Although the gradient calculation can be carried out efficiently, the Quasi-Newton 

search direction provided by the LBFGS algorithm may not be the best search direction 

in terms of the convergence rate of the optimization algorithm.  An alternative to the 

LBFGS algorithm is the Gauss-Newton algorithm commonly used to solve nonlinear 

least squares problems.  In a Gauss-Newton algorithm, the true Hessian of )(xρ  is 

approximated by JJB T= , where J is the Jacobian matrix defined in (8).  Consequently, 

we need to solve the linear system 

)()()( kkk
T

k xsxJxJ ρ−∇=  (16) 

at each Gauss-Newton iteration to obtain a Gauss-Newton search direction.  Because the 

Jacobian matrix is quite large but sparse, it is more appropriate to solve the above linear 

system by using an iterative method such as the LSQR algorithm developed in (Paige and 

Saunders, 1982).  An iterative method does not require JJB T= to be formed explicitly.  

It only requires one to provide an efficient way to calculate the matrix vector product of 

the form xJJy T← .  In our case, this is entirely possible due to the sparsity structure of 

J illustrated in (8).  The need to solve the linear system (14) makes the Gauss-Newton 

method somewhat less attractive because the method is more expensive per iteration.  
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However, since the Gauss-Newton method may provide a better search direction, it may 

reduce the number of iterations required to reach a local minimizer of )(xρ  significantly.  

The trade-off between following better search directions to reduce the number of iterative 

steps required to reach the minimum of (1) and the computation cost for generating these 

search directions will be explored in future studies. 

More work is also required to investigate the performance of the iterative 

optimization scheme on realistic data.  In particular, we plan to further investigate the 

effectiveness of the optimization scheme on noisy projection images.  The method is not 

expected to be effective when the SNR in the projection data is very low because in that 

case the derivative calculations based on finite difference typically do not provide a 

reliable search direction.  One possible work around to this problem would be to identify 

an appropriate surrogate function for )(xρ .  A surrogate function is a function that shares 

the same local minimizer with that of the true objective function.  It must be smooth and 

easy to evaluate, although it may notably differ from the true objective function outside 

of the neighborhood of the optimal solution.  One potential candidate of a surrogate 

function is 

2

1

1 ˆˆ( , , , ) ( , , ) ,
2

m

i i i i i i i
i

f P f bρ φ θ ψ φ θ ψ
=

= −∑  (17) 

where ib̂  is a low-pass filtered version of ib . 

In addition to the use of a surrogate function, we may also apply regularization 

techniques to the optimization procedure to reduce noise amplification.  Several 

regularization techniques have recently been investigated (Hanke and Hansen, 1993).  

One commonly used technique is to add a penalty term in (1) to prevent the noise 

component in the data to grow.  That is, we may choose to optimize, for example, 

2 2

1

1 ˆˆ( , , , ) ( , , ) ,
2

m

i i i i i i i
i

f P f b fρ φ θ ψ φ θ ψ λ
=

= − +∑  (18) 

where λ is a judiciously chosen regularization parameter.  If the Gauss-Newton algorithm 

is used to choose a search direction, one can then apply the technique of trust-region to 
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regularize the optimization procedure.  The resulting algorithm is the well-known 

Levenberg-Marquardt algorithm (Levenberg, 1944; Marquardt, 1963; More, 1978). 

The presented algorithm has to be treated as a proof of concept rather than as a 

demonstration of a fully functional method.  Nevertheless, the preliminary results are 

sufficiently encouraging to warrant this report.  Moreover, we clearly outlined future 

directions of work and we argued that incorporation of additional terms is feasible and 

mathematically tractable.  The addition of translation parameters is straightforward.  The 

defocus settings, ignored in present work, can be added on two levels.  First, the 

functional (1) can be expanded in order to explicitly take into account various defocus 

settings of the EM data.  This was previously attempted by others and us and the results 

were encouraging (Penczek et al., 1997; Zhu et al., 1997; Zubelli et al., 2003) (Sorzano 

et al., 2004).  Second, since the initial defocus settings of the particles (or groups of 

them) are usually known, the related variables can be inserted into (1) and refined along 

with other variables (Mouche et al., 2001).  Finally, the unified framework of (1) can be 

further expanded along the lines of (18) to include additional terms, in particular to 

integrate the homology modeling (Marti-Renom et al., 2000) with the EM structure 

determination. 

Acknowledgments 

We thank Eva Nogales and Frank Andel for providing the TFIID data set.  This research 

used resources of the National Energy Research Scientific Computing Center, which is 

supported by the Office of Science of the U.S. Department of Energy under Contract No. 

DE-AC03-76SF00098.  This work was supported by Grants NIH P01 GM 064692 and 

NIH R01 GM 60635 (to P.A.P.) and NIH P01 GM 064692 (to E.G.N.) 

References 

Andel, F., Ladurner, A. G., Inouye, C., Tjian, R., Nogales, E., 1999. Three-dimensional 

structure of the human TFIID-IIA-IIB complex. Science 286, 2153-2156. 



 20

Beckmann, R., Bubeck, D., Grassucci, R., Penczek, P., Verschoor, Blobel, G., Frank, J., 

1997. Alignment of conduits for the nascent polypeptide chain in the ribosome-Sec61 

complex. Science 278, 2123-2126. 

Boisset, N., Penczek, P., Taveau, J. C., Lamy, J., Frank, J., 1995. Three-dimensional 

reconstruction of Androctonus australis hemocyanin labeled with a monoclonal Fab 

fragment. J. Struct. Biol. 115, 16-29. 

Craighead, J. L., Chang, W. H., Asturias, F. A., 2002. Structure of yeast RNA 

polymerase II in solution: implications for enzyme regulation and Interaction with 

promoter DNA. Structure 10, 1117-1125. 

Frank, J., Radermacher, M., Penczek, P., Zhu, J., Li, Y., Ladjadj, M., Leith, A., 1996. 

SPIDER and WEB: processing and visualization of images in 3D electron 

microscopy and related fields. J. Struct. Biol. 116, 190-199. 

Gabashvili, I. S., Agrawal, R. K., Spahn, C. M., Grassucci, R. A., Svergun, D. I., Frank, 

J., Penczek, P., 2000. Solution structure of the E. coli 70S ribosome at 11.5 Å 

resolution. Cell 100, 537-549. 

Goncharov, A. B., 1986. Integral geometry and three-dimensional reconstruction of 

objects [in Russian]. Preprint of Cybernetic Council Acad. Sci., Moscow. 

Goncharov, A. B., Vainshtein, B. K., Ryskin, A. I., Vagin, A. A., 1987. Three-

dimensional reconstruction of arbitrarily oriented identical particles from their 

electron photomicrographs. Sov. Phys. Crystallography 32, 504-509. 

Grigorieff, N., 1998. Three-dimensional structure of bovine NADH: ubiquinone 

oxidoreductase (complex I) at 22 Å in ice. J. Mol. Biol. 277, 1033-1046. 

Hanke, M., Hansen, P. C., 1993. Regularization methods for large-scale problems. 

Surveys Math. Indust. 3, 253-315. 

Hansen, P. C., 1997. Rank-deficient and discrete ill-posed problems. SIAM, Philadelphia, 

PA. 

Joyeux, L., Penczek, P. A., 2002. Efficiency of 2D alignment methods. Ultramicroscopy 

92, 33-46. 



 21

Levenberg, K., 1944. A method for the solution of certain non-linear problems in least 

squares. Quarterly of Applied Mathematics 2, 164-168. 

Marquardt, D., 1963. An algorithm for least squares estimation of non-linear parameters. 

SIAM Journal of Applied Mathematics 11, 431-441. 

Marti-Renom, M. A., Stuart, A. C., Fiser, A., Sanchez, R., Melo, F., Sali, A., 2000. 

Comparative protein structure modeling of genes and genomes. Annual Review of 

Biophysics & Biomolecular Structure 29, 291-325. 

More, J. J. (1978) The Levenberg-Marquardt algorithm: Implementation and theory, in G. 

Watson (Ed.), Lecture Notes in Mathematics, No.630 - Numerical Analysis,, pp. 105-

116. 

Mouche, F., Boisset, N., Penczek, P. A., 2001. Lumbricus terrestris hemoglobin - The 

architecture of linker chains and structural variation of the central toroid. J. Struct. 

Biol. 133, 176-192. 

Navaza, J., 2003. On the three-dimensional reconstruction of icosahedral particles. J. 

Struct. Biol. 144, 13-23. 

Norcedal, J., 1980. Updating Quasi-Newton matrices with limited storage. Math. Comp. 

35, 773-782. 

Norcedal, J., 1991. Theory of algorithms for unconstrained optimization. Acta Numerica 

1, 199-242. 

Norcedal, J., Wright, S. J., 1999. Numerical Optimization. Springer, New York. 

Pacheco, P. S., 1996. Parallel Programming with MPI. Morgan Kaufmann, San 

Francisco. 

Paige, C. C., Saunders, M. A., 1982. LSQR: An algorithm for sparse linear equations and 

sparse least squares. ACM Trans. Math. Software 8, 43-71. 

Penczek, P., Radermacher, M., Frank, J., 1992. Three-dimensional reconstruction of 

single particles embedded in ice. Ultramicroscopy 40, 33-53. 



 22

Penczek, P. A., Grassucci, R. A., Frank, J., 1994. The ribosome at improved resolution: 

new techniques for merging and orientation refinement in 3D cryo-electron 

microscopy of biological particles. Ultramicroscopy 53, 251-270. 

Penczek, P. A., Renka, R., Schomberg, H., 2004. Gridding-based direct Fourier inversion 

of the three-dimensional ray transform. J. Opt. Soc. Am. A 21, 499-509. 

Penczek, P. A., Zhu, J., Frank, J., 1996. A common-lines based method for determining 

orientations for N > 3 particle projections simultaneously. Ultramicroscopy 63, 205-

18. 

Penczek, P. A., Zhu, J., Schröder, R., Frank, J., 1997. Three-dimensional reconstruction 

with contrast transfer function compensation from defocus series. Scanning. Microsc. 

Suppl. 11, 1-10. 

Provencher, S. W., Vogel, R. H., 1988. Three-dimensional reconstruction from electron 

micrographs of disordered specimens. I. Method. Ultramicroscopy 25, 209-21. 

Radermacher, M., 1994. Three-dimensional reconstruction from random projections: 

orientational alignment via Radon transforms. Ultramicroscopy 53, 121-136. 

Radermacher, M., Ruiz, T., Wieczorek, H., Gruber, G., 2001. The structure of the V(1)-

ATPase determined by three-dimensional electron microscopy of single particles. J. 

Struct. Biol. 135, 26-37. 

Radermacher, M., Wagenknecht, T., Verschoor, A., Frank, J., 1987. Three-dimensional 

reconstruction from a single-exposure, random conical tilt series applied to the 50S 

ribosomal subunit of Escherichia coli. J. Microsc. 146, 113-36. 

Saxton, W. O., Baumeister, W., 1982. The correlation averaging of a regularly arranged 

bacterial envelope protein. J. Microsc. 127, 127-138. 

Sorzano, C. O., Marabini, R., Herman, B., Censor, Y., Carazo, J. M., 2004. Transfer 

function restoration in 3D electron microscopy via iterative data refinement. Phys. 

Med. Biol. 49, 509-522. 

van Heel, M., 1987. Angular reconstitution: a posteriori assignment of projection 

directions for 3D reconstruction. Ultramicroscopy 21, 111-124. 



 23

Yin, Z. H., Zheng, Y. L., Doerschuk, P. C., Natarajan, P., Johnson, J. E., 2003. A 

statistical approach to computer processing of cryo-electron microscope images: 

virion classification and 3-D reconstruction. J. Struct. Biol. 144, 24-50. 

Zhu, J., Penczek, P. A., Schröder, R., Frank, J., 1997. Three-dimensional reconstruction 

with contrast transfer function correction from energy-filtered cryoelectron 

micrographs: procedure and application to the 70S Escherichia coli ribosome. J. 

Struct. Biol. 118, 197-219. 

Zubelli, J. P., Marabini, R., Sorzano, C. O., Herman, G. T., 2003. Three-dimensional 

reconstruction by Chahine’s method from electron microscopic projections corrupted 

by instrumental aberrations. Inverse Problems 19, 933-949. 



 24

Figures 

(a) (b) (c) 

Figure 1.  The isosurfaces of the TFIID structure from three different viewing angles. 

These surface renderings are generated by Vis5D (http://vis5d.sourceforge.net/).  The 

leftmost view (a) is the top view; (b) is the front view obtained by rotating (a) by 90○ 

around the horizontal axis; and (c) is obtained by rotating (b) by another 90○ around the 

vertical axis. 

 

 

 

 

(a) (b)   (c) 

 

Figure 2.  The isosurface of the initial guess of the TFIID structure from three different 

view angles.  The leftmost view (a) is the top view; (b) is the front view obtained by 

rotating (a) by 90○ around the horizontal axis; and (c) is obtained by rotating (b) by 

another 90○ around the vertical axis. 
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Figure 3.  The distribution of the exact projection directions defined by ),( ii θφ  (the blue 

dots) and initial guesses of these projection directions defined by )ˆ,ˆ( ii θφ  (the red dots). 

 

 

 
Figure 4.  The objective function defined in (1) decreases monotonically during the first 

100 LBFGS iterations. 
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Figure 5.  The relative error of the 3-D structure as a function of the number of LBFGS 

iterations. 

 

 

 

 

 

(a) (b) (c) 

Figure 6.  The reconstructed 3-D structure of TFIID.  The leftmost view (a) is the top 

view; (b) is the front view obtained by rotating (a) by 90○ around the horizontal axis; and 

(c) is obtained by rotating (b) by another 90○ around the vertical axis. 
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Figure 7.  Comparison of the exact (blue dots) and estimated projection directions (red 

dots). 
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Figure 8.  The FSC curve calculated between the reconstructed structure and the model 

structure of TFIID. 

 

 
Figure 9.  Comparison of computational time required consumed by projection matching 

and by LBFGS.  The relative error is plotted as a function of the wall clock time used on 

a 16×375Mhz IBM Power3 processors. 
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Figure 10.  Comparison of the FSC curves produced by projection matching and 

simultaneous refinement. 
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Figure 11. Comparison of relative errors as a function of number of iterations (expressed 

in terms of wall clock time) for LBFGS algorithm applied to noise-free and noise-

corrupted TFIID data. 

 

 

 
Figure 12. Comparison of the FSC curves associated with a noise-free and a noise-

corrupted refinement of the TFIID data. 


